The cytoplasmic domain of the myelin P0 protein influences the adhesive interactions of its extracellular domain
نویسندگان
چکیده
The extracellular domain of the myelin P0 protein is believed to engage in adhesive interactions and thus hold the myelin membrane compact. We have previously shown that P0 can behave as a homophilic adhesion molecule through interactions of its extracellular domains (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.) 344:871-872). To determine if the cytoplasmic domain of P0 must be intact for the extracellular domains to adhere, we compared the adhesive capabilities of P0 proteins truncated at the COOH-terminal to the full-length P0 protein. P0 cDNAs lacking nucleotides coding for the last 52 or 59 amino acids were transfected into CHO cells, and surface expression of the truncated proteins was assessed by immunofluorescence, surface labeling followed by immunoprecipitation, and an ELISA. Cell lines were chosen that expressed at least equivalent amounts of the truncated P0 proteins at the surface as did a cell line expressing the full-length P0. The adhesive properties of these three cell lines were compared. It was found that when a suspension of single cells was allowed to aggregate for a period of 60 min, only the cells expressing the full-length P0 had formed large aggregates, while the cells expressing the truncated P0 molecules were still mostly single cells indistinguishable from the control cells. Furthermore, 25-30% of the full-length P0 was insoluble in NP40, indicative of an interaction with the cytoskeleton, whereas only 5-10% of P0 lacking 52 amino acids and none of P0 lacking 59 amino acids were insoluble. These results suggest that for the extracellular domain of P0 to behave as a homophilic adhesion molecule, its cytoplasmic domain must be intact, and most probably, it is interacting with the cytoskeleton.
منابع مشابه
Crystal Structure of the Extracellular Domain from P0, the Major Structural Protein of Peripheral Nerve Myelin
P0, the major protein of peripheral nerve myelin, mediates membrane adhesion in the spiral wraps of the myelin sheath. We have determined the crystal structure of the extracellular domain from P0 (P0ex) at 1.9 A resolution. P0ex is folded like a typical immunoglobulin variable-like domain; five residues at the C-terminus are disordered, suggesting a flexible linkage to the membrane. The require...
متن کاملProteomics of bovine myelin sheath: characterization of a truncated form of P0 by MALDI-TOF/TOF mass spectrometry.
The glycoprotein P0, the major structural protein of the peripheral nerve myelin, plays a critical role in holding myelin lamellae together via interaction of both extracellular and cytoplasmic domains. Mutations in the human P0 gene give rise to severe and progressive forms of dominantly inherited peripheral neuropathies like CMT1B. Here we report on the characterization of a bovine P0-derived...
متن کاملIsolation and analysis of the gene encoding peripheral myelin protein zero.
We have isolated the gene encoding the Schwann cell glycoprotein P0, the major structural protein of the peripheral myelin sheath. In rats and mice, this gene is split into six exons distributed over 7 kb of DNA. The segregation of these exons is consistent with the functional segregation of the P0 protein into extracellular, membrane-spanning, and cytoplasmic domains. We find that the P0 extra...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملNovel mutation of the P0 extracellular domain causes a Déjérine-Sottas syndrome.
A patient is described with a Déjérine-Sottas syndrome caused by a novel heterozygous Cys(98)Tyr mutation in the extracellular domain of the major peripheral myelin protein zero (P0ex). Homotypical interactions between P0ex tetramers of apposed extracellular faces of the Schwann cell membrane play a crucial part in myelin compaction. The amino acid change disrupts a unique disulphide bond that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 126 شماره
صفحات -
تاریخ انتشار 1994